4.22.20

Motion Equations: All 6 Equations

Today's Objectives:

- Recap Problem Solving Process
- Practice using equations
- Use real data from real cars

What are the three steps to solving physics word problems?

1. Make a List of the given information

- 2. Identify the Missing Variable
- 3. Pick an equation that has ____ unknown

A car starts at 5m/s, moves 100m in 4.3s.

What is its acceleration?

$$V_{0}=5$$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=100$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=100$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=100$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=100$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=100$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=100$
 $d=V_{0}t+\frac{1}{2}at^{2}$
 $d=V_{0}t+\frac{$

78.5 = 9.245 a

1. V=d/t(GNOnty!)

2.
$$v_1 = v_0 + at$$

3.
$$a = (vf - vo) / t$$

4.
$$d = v_0 t + \frac{1}{2} a t^2$$

5.
$$d = \frac{1}{2} (v_o + v_f)t$$

6.
$$v_f^2 = v_o^2 + 2ad$$

A drag racer slows down from 85 to 45 m/s, using a parachute that has an acceleration of -11m/s².

How far did the car move while braking?

1.
$$v = d / t (CV Only!)$$

2.
$$v_1 = v_0 + at$$

3.
$$a = (vf-vo)/t$$

4.
$$d = v_0 t + \frac{1}{2} a t^2$$

5.
$$d = \frac{1}{2} (v_0 + v_f)t$$

6.
$$v_f^2 = v_o^2 + 2ad$$